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Abstract: Coupling crop growth models and remote sensing provides the potential to improve our
understanding of the genotype x environment x management (G× E×M) variability of crop growth on
a global scale. Unfortunately, the uncertainty in the relationship between the satellite measurements
and the crop state variables across different sites and growth stages makes it difficult to perform the
coupling. In this study, we evaluate the effects of this uncertainty with MODIS data at the Mead,
Nebraska Ameriflux sites (US-Ne1, US-Ne2, and US-Ne3) and accurate, collocated Hybrid-Maize
(HM) simulations of leaf area index (LAI) and canopy light use efficiency (LUECanopy). The simulations
are used to both explore the sensitivity of the satellite-estimated genotype ×management (G ×M)
parameters to the satellite retrieval regression coefficients and to quantify the amount of uncertainty
attributable to site and growth stage specific factors. Additional ground-truth datasets of LAI and
LUECanopy are used to validate the analysis. The results show that uncertainty in the LAI/satellite
measurement regression coefficients lead to large uncertainty in the G×M parameters retrievable from
satellites. In addition to traditional leave-one-site-out regression analysis, the regression coefficient
uncertainty is assessed by evaluating the retrieval performance of the temporal change in LAI and
LUECanopy. The weekly change in LAI is shown to be retrievable with a correlation coefficient absolute
value (|r|) of 0.70 and root-mean square error (RMSE) value of 0.4, which is significantly better than the
performance expected if the uncertainty was caused by random error rather than secondary effects
caused by site and growth stage specific factors (an expected |r| value of 0.36 and RMSE value of
1.46 assuming random error). As a result, this study highlights the importance of accounting for site
and growth stage specific factors in remote sensing retrievals for future work developing methods
coupling remote sensing with crop growth models.
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1. Introduction

1.1. Background

Mechanistic crop growth models temporally predict the growth of crops as a function of genotype
x environment x management (G × E × M) factors [1]. By mechanistically modeling the effects of
G × E ×M factors and their interactions, crop growth models are able to integrate information about
the properties of the seed (genotype), the decisions farmers make both at planting and within the
season (management), and the variability in the weather and soil (environment). Examples of these
factors in each category of G × E × M are shown in Table 1 [2,3]. In addition to these G × E × M
factors, biotic stresses—such as weeds, pests, and diseases—can further limit the growth of crops and
these factors are difficult to model, although some recent advances have been made [4]. Nevertheless,
in highly developed cropping systems, such as the US corn belt, fields tend to be well-managed and the
reduction in yield caused by unmodeled factors, such as biotic stresses, is generally 20% or less [5,6].
As a result, mechanistic crop growth model simulations are able to provide valuable information with
relatively strong predictive performance in highly developed cropping systems [6,7].

Table 1. Examples of common G × E ×M factors included in crop growth model simulations [2,3].

Genotype (G) Environment (E) Management (M)

-Relative maturity/Growing
degree days (GDD) to maturity

-GDD to flowering
-Potential kernel number per ear

-Grain growth rate

-Air temperature
-Precipitation

-Solar radiation
-Soil bulk density

-Soil available water
-Soil organic matter

-Soil pH

-Planting date
-Planting density

-Fertilization
-Irrigation

Assimilation of remote sensing data into crop growth models can be used to reduce the uncertainty
in the G × E ×M factors (which control crop growth) via calibration [8–11]. In the calibration approach
to remote sensing data assimilation, the model parameters and G × E ×M factors affecting crop growth
are adjusted by reinitialization until the crop growth model output agrees with the remote sensing
observation (as opposed to the updating or forcing approaches where the crop model state variables
are themselves directly altered) [9]. However, uncertainty in the remote sensing retrievals of crop
state variables, such as leaf area index (LAI), leads to significant challenges [9] in the calibration and
determination of the G × E ×M factors. This is because the interactions of G × E ×M factors in crop
growth models are highly non-linear and careful application of inversion techniques is required to
determine input parameters from observations [12,13]. As a result, even small uncertainties in the
remote sensing retrievals can propagate into significant errors in the G × E ×M factors determined by
calibration [14]. Therefore, calibration of crop models with remote sensing data is primarily used to
analyze output variables, such as yields and biomass, discarding the G × E ×M factors determined by
calibration as an intermediate step [8,15–18].

Nevertheless, improved understanding of the G × E ×M factor variability can greatly improve
our ability to use crop growth models at the regional scale [6,19,20] to predict into the future and
answer questions about climate change [21], agricultural policies [22,23], and yield gaps [24]. At the
regional scale, G × E ×M parameter uncertainty is even more significant due to a lack of calibration
data as compared to the field-scale [1,25]. Thus, constraints from measurements other than yield are
vital for further reduction in the uncertainty [25] at this scale. Illustrating this point, ref. [25] found that
the majority of the uncertainty in LAI simulations for regional simulations of Indian groundnut was
parametric uncertainty, indicating the potential of reductions in the uncertainties of satellite retrievals
(such as those of LAI) to significantly improve our understanding of G × E ×M variability in calibration
of regional crop models [26].
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The crop state variable retrieval uncertainty is in a large part caused by the variability in secondary
factors [27–32] that influence the remote sensing measurements, such as cultivar type, soil background,
canopy structure, and inherent leaf properties; most of these secondary factors are strongly dependent
on site and growth stage [33–36]. Physical canopy radiative transfer models, such as PROSAIL [37],
provide a theoretical model to understand the effect of the secondary factors by forward modeling the
top-of-canopy reflectance spectrum from variables describing the soil background, canopy structure,
and leaf properties [9]. However, inversion of canopy radiative transfer models is ill-posed [38]
and requires the use of a priori constraints to perform the retrievals [39,40]. While temporal [40–42]
and spatial [40,43] constraints can be used to address the ill-posedness of the retrieval, they are not
sufficiently powerful to remove the uncertainty. As a result, assumptions must be made about the
canopy structure and leaf properties [40]. Unfortunately, although both canopy structure and leaf
properties have a significant effect on the uncertainty of the retrieval [32], it is difficult to constrain them
beyond finding appropriate ranges for the values based on land cover [44] and selecting vegetation
indices with greater sensitivity to the variable of interest [32,45,46]. However, even though the full
spectral modeling can optimize the best choice of vegetation indices for given applications, using
vegetation indices in the retrievals directly still results in valuable spectral information being lost,
undercutting the benefits of the possibility of using the full spectral information available with canopy
radiative transfer models in the retrieval itself [47] as full-spectrum methods have shown good results
in the literature [48,49].

However, because of the lack of information available to remove the uncertainty about secondary
factors, physical radiative transfer approaches have not dominated over empirical approaches, although
these often do not use the full spectral information available from the sensor and lack a theoretical
basis to control secondary factors [27–29]. The empirical algorithms overcome these issues by directly
using training data to learn to use the “subtle spectral features to reduce undesired effects” [47] that
make vegetation retrievals difficult. In addition, in some cases, empirical methods are also able to
improve the retrievals with auxiliary information [29,50,51].

In empirical approaches, the uncertainty caused by the variability in secondary factors manifests as
the “one place, one time, one equation” issue [27] where regressions between the satellite measurements
and the crop state variables trained on one set of sites and times do not generalize well to another
set of sites and times [27,28]. The issue occurs because most empirical studies develop a global
regression relating the satellite measurements to the crop state variables which does not account for
the spatiotemporal variability in the secondary factors, although some studies have attempted to use
the secondary factors to improve the retrieval [29,50,51]. Specifically, refs. [50,51] find that developing
separate regression models for different growth stages provides the best results, while [29] finds that
including cultivar, planting pattern, and growth stage in the model could improve the performance of
the retrievals. While the secondary factors in [29,50,51] do not correspond to the secondary factors in
physical radiative transfer models such as PROSAIL, their indirect connection to the leaf and canopy
parameters used by PROSAIL [33–36] allows them to reduce the uncertainty caused by the secondary
effects. Nevertheless, the work on including secondary effects is quite limited and hampered by lack of
available data [28] to span the large spatiotemporal variability in these secondary factors, calling for
new approaches to address this issue.

In order to address the uncertainty caused by secondary factors, it is necessary to obtain data that
covers the extent of their spatiotemporal variability. Crop growth models provide one possible avenue
to obtain information on the secondary factor leaf and soil properties. The use of crop growth models
to obtain information about the secondary factors has been best explored in coupling studies [52–55],
where remote sensing data is assimilated into a combined model consisting of a crop growth model,
a canopy radiative transfer model, and formalisms linking the outputs of the growth model with
the inputs of the radiative transfer model. These studies [52–55] have been successful in coupling
several variables from the crop growth models, such as LAI, leaf structure parameter, water content,
dry matter content, total chlorophyll content, and relative soil dryness. The variables coupled in
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addition to LAI are secondary factors that affect LAI retrieval [32] and the coupling can be understood
to provide constraints on these secondary factors from the biological mechanics of growth and its
interaction with the weather/soil environment. In addition, if available, any genetic (cultivar choice)
or management information inputted into the crop model can provide additional constraints on the
secondary factors [56]. Unfortunately, it is difficult to use crop growth models to gain information
about these secondary parameters at a regional scale as information about G × M parameters is
limited at this scale [57]. As a result, regional crop growth model simulations are generally validated
only against crop yields and phenological dates [6,20,58–60] and consequently may have significant
uncertainty in their prediction of in-season state variables (many of which are secondary factors in
LAI retrieval) [61]. In contrast, field-scale crop growth model simulations have been validated in
much more detail with respect to in-season state variables. For example, several studies [2,62–65]
evaluate their performance in predicting LAI, canopy cover, biomass, soil moisture, soil nitrogen, plant
nitrogen, evapotranspiration, and phenology as well as yield. The crop model’s stronger performance
at field-scale in predicting both the yield and individual within-season process can be attributed to the
availability of significantly more accurate agromanagement information, and to a lesser extent to more
accurate soil and weather data, at this scale [66]. Thus, incorporating field-scale crop growth modeling
of secondary parameters in training and testing agricultural satellite retrieval algorithms [67] can
potentially provide for significant advances in addressing the uncertainty caused by site and growth
stage specific secondary factors.

1.2. Overview

In this study, we seek to show that the difficulties in using remote sensing to determine the
G × E ×M factors affecting crop growth are strongly connected to variability in the relationship of
satellite measurments and crop state variables and that the variability in the relationship is in a large
part caused by site and growth stage specific factors. In order to achieve these objectives, this study
uses field-scale crop growth model simulations powered by accurate agromanagement information and
collocated with satellite data at the Mead, Nebraska Ameriflux sites, supplemented by ground-truth
data from additional sites for validation. Crop growth model simulations are used from only the
Mead, Nebraska Ameriflux sites because geolocated agromanagement information, vital [66] to strong
simulation performance, is difficult to collect, partially due to farmer concerns about data privacy [68],
limiting available information about commercial-sized plots. The availability of collocated crop growth
model simulations allows us to (a) analyze the sensitivity of the genotype x management (G × M)
factors retrieval by the satellite to variability in the relationship of satellite measurments and crop
state variables and (b) use time-series analysis to analyze the uncertainty caused by this variability.
Furthermore, the collocated crop growth model simulations are used to demonstrate the possibility of
training and testing agricultural remote sensing algorithms with farmer-collected agromanagement
data across a wide range of spatiotemporal variability, following the concept we introduced in [67] at
the regional scale. Specifically, as in [67], the crop growth model simulations based on the provided
data can be used to train and test remote sensing retrieval algorithms and, with sufficient farmer
participation, a large swath of the spatiotemporal variability of the secondary factors affecting the
retrievals can be covered. This dataset would allow further research to find methods to optimally
use available weather, soil, and remote sensing data to create algorithms to map the regional-scale
variability in G × E ×M. As a result, by using crop growth model simulations at a fixed number of
sites where the G ×M parameters are known, a remote sensing retrieval algorithm could be trained to
map G ×M parameters where they are unknown and where no high quality collocated crop growth
model simulations are available.
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2. Materials and Methods

2.1. Data

In this study, we rely on two ground-truth maize datasets, which we term FLUX and LAIGROUND.
The data sources are summarized in Table 2.

The FLUX dataset consists of CO2 flux tower measurements of gross primary productivity (GPP)
and incoming solar radiation (SRAD) time series in maize fields. The eddy-covariance technique
determines the CO2 flux, which is termed the net ecosystem exchange (NEE), from the covariance of the
vertical wind velocity and CO2 flux, sampled by the tower at 10–20 Hz and averaged to 30–60 minute
periods [69]. The height of the flux tower is selected to have an appropriate footprint covering the field
being studied by the tower. The ecosystem respiration is removed from the NEE to obtain the amount
of carbon captured by the producers in the field (GPP) by a partitioning algorithm. In this study, the
GPP is either obtained from the nighttime-partitioned product provided by FLUXNET2015 [70] or
the site principal investigators (PIs), or calculated from NEE using the nighttime-based partitioning
algorithm of [71] implemented in [72]. In addition, ground-truth LAI that was measured at sites on
some days of the season and the planting and harvest dates were obtained.

The LAIGROUND dataset consist of ground-truth LAI measurements of maize obtained
during various campaigns with different measurement technique (Destructive, LAI2000, AccuPAR,
Hemispheric Photography) compiled by [27]. Destructive measurements of LAI rely on physically
sampling leaves in predefined areas in the field and measuring them in a laboratory to estimate the
LAI in the field. In contrast, the LAI2000, AccuPAR, and Hemispheric Photography techniques use
ground-based optical measurements made by researchers in the field on sampling campaign days,
along with physics and image-processing based techniques, to estimate the LAI. Further details on all
the different measurement techniques can be found in [73]. Each site in this dataset represents a different
measurement campaign and some consist of LAI measurements on a single day in neighboring plots,
some consist of LAI measurements in different fields (sometimes many kilometers apart), and some
consist of multitemporal measurements in the same field/plot. Two of the sites are taken at CO2

eddy-covariance tower sites in the FLUX dataset (Italy and Mead) and the analysis conducted in this
study takes care to ensure these are treated as the same sites across datasets when any site-based
cross-validation-type analysis is conducted. Following [27], LAI measurments greater than 6 and
less than 0.1 are excluded from the LAIGROUND dataset as they are beyond the prediction power of
vegitation indicies.

In addition to the ground data in Table 2, we also use solar-reflective satellite data collocated with
the ground data. Data from the Thematic Mapper (TM) sensor was used from LANDSAT 5, while data
from the Enhanced Thematic Mapper Plus (ETM+) sensor was used from LANDSAT 7. The LANDSAT
satellites used for each site depend upon which LANDSAT satellites were active when the site’s data
was collected; LANDSAT 5 was active from March 1984–January 2013, while LANDSAT 7 was active
from April 1999 to present (ca. August 2019). Data from both satellites was used at sites where data
was collected when both satellites were active. For the LAIGROUND dataset, the plots tend to be
small and we consequently use 30-m atmospherically-corrected LEDAPS surface reflectance data from
LANDSAT 5 and 7 obtained from Google Earth Engine via the GEEXTRACT python tool within 5 m of
the plot coordinates. For the FLUX dataset, the plots tend to be production-sized fields and we obtain
the average LANDSAT LEDAPS [74] surface reflectance within a 100-m radius of the plot coordinates.
In addition, because the LANDSAT temporal resolution is quite low, we obtain MODIS MCD43A4
BRDF-corrected nadir surface reflectance [75] at daily time steps (based on a weighted window of
16 days of measurements) at 500 m for the FLUX sites, allowing for temporal analysis of the retrieval
performance. MODIS data was available for the entire study period for the FLUX sites.
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Table 2. Ground-truth data sources.

Name Source(s) Sites Variables

Name Latitude Longitude Name Years

Flux Tower
Data

(Dataset
FLUX)

Ameriflux
[76]

US-Ne1 [35] 41.17 −96.48

GPP
SRAD

Ground-truth
LAI

Planting
Date

Harvest Date

2001–2009
US-Ne2 [35] 41.16 −96.47 2001–2009, odd years
US-Ne3 [35] 41.18 −96.44 2001–2009, odd years
US-Ro1 [77] 44.71 −93.09 2005, 2009, 2011, 2013
US-Bi2 [78] 38.11 −121.54 2017–2018

US-ARM [79] 36.61 −97.49 2008

GHG Europe

DE-Kli [80] 50.89 13.52 2007, 2012
FR-Gri [81] 48.84 1.95 2008, 2011

FR-Lam [82] 43.5 1.24 2006, 2008, 2010
IT-BCi [83] 40.52 14.96 2004–2009

NL-Lan [84] 51.95 4.90 2005

LAI
Validation

Data
(Dataset

LAIGROUND)

[27]

Beltsville 39.02 −76.85

Ground-truth
LAI

1998
(N = 26)

CEFLES2 [85] 44.37–44.46 0.19–0.41 2007
(N = 26)

California [86] 35.48–39.22 −122.14–−119.28 2011–2012
(N = 59)

Italy (IT-BCi) [83] 40.52 14.96 2008–2009
(N = 35)

Mead (US-Ne1 to
US-Ne3) [35] 41.16 −96.46 2001–2012

(N = 92)

Missouri [87] 39.22 −92.12 2002
(N = 10)

NAFE06 [88] −35.08–−34.65 145.87–146.3 2006
(N = 14)

SEN3EXP2009 [85] 39.02–39.08 −2.13—2.08 2009
(N = 10)

SMEX02-IA [89] 41.76–42.67 −93.73–−93.28 2002
(N = 21)

SPARC [85] 39.03–39.15 −2.18–−1.88 2003–2004
(N = 45)

2.2. Hybrid-Maize (HM) Simulations

Simulations from the Mead, Nebraska Ameriflux sites performed by [90] with the Hybrid-Maize
(HM) crop growth model are used in this study. The simulations in [90] are based on accurate weather,
soil, and agromanagement inputs at the sites and were publicly released [91]. The agromanagement
inputs that were recorded at the sites and included in the simulations are planting date, cultivar
maturity, plant density, and irrigation. The simulations were validated by [90] with respect to yield,
crop respiration, soil respiration, and ecosystem respiration; they are further validated by us in
Section 3.1 with respect to LAI and canopy light use efficiency (LUECanopy).

2.3. Methods

In this subsection, we discuss the methods we use to evaluate the influence of site and growth stage
specific secondary factors on the relationship between crop state variables and satellite measurments
and the retrievability of G ×M factors from satellite data. We focus on LAI and GPP in this study
because these variables are some of the most commonly retrieved from remote sensing [92]. GPP also
serves as a good complement to LAI because, unlike LAI, it is measured on a daily time scale at CO2

eddy-covariance tower stations. Thus, it can be used to provide validation of the temporal analysis
performed on crop growth model simulations of LAI. In addition, it should be noted that, as in [67],
the methods in this paper can be applied to crop growth model simulated variables whose time series
are more difficult to measure than LAI and GPP, providing a basis to analyze performance over a wide
range of crop state variables.

As daily GPP strongly depends on the daily SRAD, studies analyzing satellite-derived GPP must
account for the strong temporal variability of SRAD when performing retrievals; this is because the
variability in SRAD can mask the much smaller variability component in GPP caused by changes in
the leaves, plants, and canopy structure [93]. A common technique to do so is correlating the product
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of the remote sensing measurement and SRAD with daily GPP, as opposed to the remote sensing
measurement itself [93]. To achieve a result identical to [93], we analyze the canopy light use efficiency
(LUECanopy) in place of the GPP, which we define as

LUECanopy =
GPP

SRAD
, (1)

As the definitions of various light use efficiencies are not standardized in the literature, we need to
clarify that LUECanopy is essentially equivalent to LUEInc in [94], except that incident photosynthetically
active radiation (PARinc) is used in place of SRAD. In addition, we wish to note that for the purposes of
this study, the criticism of LUEInc in [94] does not apply because our goal in calculating LUECanopy is
simply to remove the influence of SRAD and not any plant-based process.

2.3.1. Evaluation of HM Simulations

First, in order to use the HM simulations to evaluate the retrievals, we expand upon the validation
performed by [90] to include LAI and LUECanopy. To do so, the modeled and measured values are
scatter plotted against each other and the coefficient of determination (R2) to the best-fit line and the
root mean square error (RMSE) between the modeled and measured data are calculated. In order
to facilitate comparison between the modeling performance of LAI versus LUECanopy, only dates on
which both LAI and LUECanopy measurements were available were included in the analysis to ensure
that the distribution of crop growth stage did not vary between scatterplots or performance metrics
(R2 and RMSE).

In addition, because daily LUECanopy measurements were available, a separate analysis of the
performance of the LUECanopy values and the change in LUECanopy is made. The change in LUECanopy

is defined as
∆LUECanopy[t] = LUECanopy[t + ∆ − 1] − LUECanopy[t− ∆ + 1], (2)

where ∆ is in days and termed the ∆ window. ∆LUECanopy is more sensitive to environmental-induced
changes than the LUECanopy value itself and the performance in modeling it thus provides additional
information on the strengths and limitations of the model.

Furthermore, because of high frequency variability in LUECanopy, the time series modeling
performance is analyzed at various levels of smoothing. The smoothing is performed by a moving
average filter which is defined as

LUECanopy[t] =
1

2N − 1

N−1∑
i=−N+1

LUECanopy[t + i], (3)

where N is in days and termed the smoothing window.

2.3.2. Regression-Based LAI and LUECanopy Retrieval

Second, we train a regression of LANDSAT measurements to LAI and LUECanopy with the
LAIGROUND and FLUX datasets. Specifically, we determine the regression coefficients in

LAI = aEVI2 + b, (4)

LUECanopy = cEVI2 + d, (5)

where EVI2 is the Enhanced Vegetation Index 2 [27] and is defined as

EVI2 = 2.5
NIR−Red

1 + NIR + 2.4Red
, (6)
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and NIR is the surface reflectance in the near-infrared band, while Red is the surface reflectance in the red
band. The NIR is designated as Band 4 (0.77–0.90 µm) on Landsat 5 and 7, while the Red is designated
as Band 3 (0.63–0.69 µm). The coefficients are determined with leave-one-site-out cross-validation
by calculating the coefficients on all sites except the one being evaluated. The RMSE performance is
then assessed using the coefficients determined from all the other sites and the procedure is repeated
for each site. In addition, confidence intervals for the coefficients are determined by bootstrapping.
Specifically, for each left-out site, regression coefficients are determined for 1000 random subsets of the
remaining sites with the probability of inclusion of a point in any individual random subset equaling
50%. The 5th and 95th percentiles for the regression coefficients of these subset realizations are used as
the estimated lower and upper bound of the leave-one-out regression coefficients for the site.

The LAIGROUND and FLUX datasets are analyzed separately for this procedure. The nearest
cloud-free LANDSAT measurement within 15 days of the ground measurement is used to analyze the
LAIGROUND dataset for consistency with [27], while the average cloud-free LANDSAT measurement
within 10 days of the ground measurement is used for the analysis of the FLUX dataset.

2.3.3. Satellite Retrieval and Crop Growth Model Sensitivity Analysis

Third, we analyze the sensitivity of the crop growth model to its G × M inputs and analyze
how uncertainty in the satellite retrieval of LAI propagates to the uncertainty in estimation of its
G × M inputs. Specifically, we perform new Hybrid-Maize simulations based on the inputs used
in [90], varying the planting density, the planting date, and the seed’s growing degree days to maturity
from their actual values, and observe the error in the modeled LAI with respect to the measured LAI
for the modified simulations. As the emergence date is directly input into the simulations in [90],
a preliminary set of Hybrid-Maize simulations is used to determine the appropriate planting date in
Hybrid-Maize for the observed emergence date and then this planting date is varied in the sensitivity
analysis. This method of determining the planting date to be varied is used in place of the actual
planting date to remove the uncertainty caused by modeling the planting to emergence time (as in [90]).

Comparison of the modeled LAI is performed with both the actual measured ground-truth LAI and
the measured LAI retrieved from the MODIS measurements. To visualize the effect of the uncertainty
in the regression coefficients, the error is shown for a range of regression coefficients determined from
the confidence intervals obtained by bootstrapping in the previous subsection. Specifically, the slope
of the regression is linearly varied from its minimum lower bound to its maximum upper bound
while the intercept of the regression is simultaneously varied from its maximum upper bound to its
minimum lower bound. As a large value for the intercept compensates for a lower value in the slope
and vice versa, this method generates a realistic space within which to analyze the variation of the
regression coefficients.

2.3.4. Evaluation of Uncertainty of LAI and LUECanopy Retrievals Due to Site and Growth Stage
Specific Factors with Temporal Analysis

Fourth, we assess the uncertainty of LAI and LUECanopy retrievals with temporal analysis due to
site and growth stage specific factors. Due to the “one place, one time, one equation” concept [27],
different regression equations should be used to retrieve the LAI and LUECanopy at different sites and
growth stages (different times). Furthermore, data from different years may also appear to require
different regression equations because the interannual difference in weather and agromanagement is
very significant [13] and can cause large differences in secondary factors. Therefore, different years can
also be considered different sites for the purposes of this analysis. In order to separate uncertainty
caused by site and growth stage specific factors from other types of uncertainty, we use temporal
analysis and focus on the retrieval of the temporal change in LAI and LUECanopy. Errors caused by site
and growth stage specific factors should be strongly positively correlated at the same place and nearby
times; as a result, errors should partially cancel out when retrieving the temporal change as opposed to
the actual values themselves. Thus, in order to assess the extent of the uncertainty caused by site and
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growth stage specific factors, the retrieval error of the change in LAI and LUECanopy is compared to the
theoretical error of the change in LAI and LUECanopy assuming temporal independence of error.

To perform the temporal uncertainty analysis for LAI, we use the LAIGROUND dataset as the
baseline retrieval and apply the LANDSAT-trained leave-one-site-out regression coefficients from
Equation (4) to the MODIS MCD43A4 BDRF-adjusted daily surface reflectance time series to obtain
retrievals of LAI with daily resolution. The NIR band is designated as Band 2 on MODIS (0.84–0.88 µm),
while the Red band is designated as Band 1 on MODIS (0.62–0.67 µm). The training of the LAI retrieval
algorithm is performed on the LAIGROUND dataset with LANDSAT measurements for two reasons:

• Using the LAIGROUND dataset with LANDSAT imagery better allows for the use of exact point
measurements in fields and is thus less likely to be subject to uncertainty in training due to the
inhomogeneity of LAI in the field, which can be significant [95].

• Training on high-resolution LANDSAT imagery as opposed to moderate-resolution MODIS
imagery is preferable due to the significance of the mixed-pixel effect and neighboring pixels of
other land types (including other crops) [95,96].

In addition, a scaling effect correction algorithm is not used to correct for the uncertainty in
applying a regression trained on LANDSAT data to MODIS data as these algorithms generally require
a priori information on the subpixel contents of the moderate resolution MODIS pixels [95,96] which is
not readily available. For this reason, training on MODIS pixels would likely not provide a benefit
with respect to the uncertainty as it is likely that the bias caused by LAI inhomogeneity and the mixed
pixel effect varies strongly from site to site [95,96].

With these daily LAI retrievals from MODIS measurements, we calculated the change in LAI as

∆LAI[t] = LAI[t + ∆ − 1] − LAI[t− ∆ + 1], (7)

where ∆ is in days and termed the ∆ window.
The MODIS-retrieved ∆LAI is compared to the crop growth model predicted ∆LAI using the

correlation coefficient absolute value (|r|) and RMSE. These metrics are compared to the theoretical |r|
and RMSE if the error of retrieved LAI [t + ∆ − 1] and LAI [t − ∆ + 1] were independent with a RMSE
equivalent to the leave-one-site-out RMSE calculated in Section 2.3.2. In this case, the theoretical RMSE
and |r| can be calculated as

RMSE(∆LAI[t])Theor = RMSE(LAI[t + ∆ − 1] − LAI[t− ∆ + 1]) =
√

2RMSE(LAI[t]), (8)

∣∣∣r (∆LAI[t])Theor

∣∣∣ = ∣∣∣∣∣∣∣ cov(∆LAIactual + e∆LAI, ∆LAIactual)√
var(∆LAIactual + e∆LAI)var(∆LAIactual)

∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣

1√
1 +

[ √
2RMSE(LAI[t])
σ(∆LAIactual)

]2

∣∣∣∣∣∣∣∣∣∣∣∣, (9)

The uncertainty analysis for LUECanopy is complicated by the presence of high frequency
components that need to be smoothed by Equation (3) in order to fully understand the temporal
resolution of the retrieval. As the baseline retrieval methods with LANDSAT cannot account for the
effects of the temporal smoothing because LANDSAT does not make daily measurements, the baseline
retrieval must be retrained with MODIS measurements. Thus, leave-one-site-out regression is used to
determine the regression coefficients in

LUECanopy = pEVI2 + q, (10)

where EVI2 is the moving average of EVI2 defined as

EVI2[t] =
1

2N − 1

∑N−1

i=−N+1
EVI2[t + i], (11)
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With these leave-one-site-out regression coefficients, a baseline RMSE for the retrieval of LUECanopy
can be identified. In addition, as we have the benefit of a daily time series of MODIS measurements,
∆LUECanopy (defined in the same way as ∆LUECanopy in Equation (2) can be determined by training a
direct regression

∆LUECanopy = r
(
EVI2[t + ∆ − 1] − EVI2[t− ∆ + 1]

)
+ s, (12)

in place of using Equation (10). The regression coefficients in Equation (12) are determined by
leave-one-site-out cross-validation and the performance is compared to the theoretical |r| and RMSE
performance defined in Equations (8) and (9) (with LUECanopy substituted for LAI). As using
Equation (12) depends on having multiple sites for cross-validation, this analysis is only performed
for the actual LUECanopy measurements, while only the |r| correlation with MODIS measurements is
analyzed for the modeled measurements. The analysis for LUECanopy measurements is performed
between the planting and harvest dates reported for the sites; the LUECanopy analysis is not performed
at US-Bi2 due to the unavailability of planting and harvest dates at this site.

2.3.5. Training LAI and LUECanopy Retrievals with HM Simulations

Lastly, in order to validate the concept of training and testing field-scale remote sensing retrievals
with crop growth model simulations, we compare the performance of LAI and LUECanopy at sites
other than those in Mead, Nebraska using (a) regression coefficients trained with the actual LAI and
LUECanopy measurements at the Mead, Nebraska sites; and using (b) regression coefficients trained
with HM modeled LAI and LUECanopy values at the Mead, Nebraska sites. These retrievals are trained
and evaluated using LANDSAT measurements and the performance is reported site-by-site.

3. Results

3.1. Evaluation of HM Simulations

We first evaluate the performance of the modeled HM LAI and LUECanopy at the Mead, Nebraska
sites. In Figure 1a,b, we show scatterplots between the modeled HM LAI and LUECanopy values
and the actual values on the ground. As discussed in Section 2.3.1, only dates that have both LAI
and LUECanopy measurements are included in Figure 1a,b for consistent comparison of the modeling
performance of these two variables. The figures show strong performance for modeled LAI and
LUECanopy with R2 values of 0.91 and 0.77 and RMSE values of 0.62 and 0.30, respectively; although,
the bias for LUECanopy is relatively high.
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In Figure 2, the performance of modeled LUECanopy and ∆LUECanopy are shown for all ground
measurements of LUECanopy, not only those that also have a LAI measurement on the same date.
Figure 2a shows the scatterplot of modeled LUECanopy versus actual LUECanopy with no smoothing,
while Figure 2b shows the R2 value between modeled and actual LUECanopy and ∆LUECanopy at
different levels of smoothing and values of ∆. As seen in Equation (3), a smoothing window of 1
represents no smoothing. Only days where modeled LUECanopy is greater than zero are included in
Figure 2. In addition, a small number of days which have less than 95% of the underlying GPP time
series available are not included in Figure 2.Remote Sens. 2019, 11, x FOR PEER REVIEW 11 of 28 
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The results in Figure 2 show that the performance of modeled LUECanopy is strong with an R2 of
0.76 in the absence of smoothing and slightly higher with smoothing. In contrast, as seen in Figure 2b,
the performance of ∆LUECanopy is dependent on the level of smoothing and value of ∆, with stronger
performance with longer ∆ windows and more smoothing.

3.2. Regression-Based LAI and LUECanopy Retrieval

We now present the results of the retrieval of LAI and LUECanopy from LANDSAT EVI2
by Equations (4) and (5) via leave-one-site-out cross validation. In Figure 3, we present the
leave-one-site-out performance for all sites combined in separate scatterplots for the LAIGROUND
and FLUX datasets (prediction performed with leave-one-site-out site-by-site and then combined into
a single scatter plot). Figure 3a shows the LAI retrieval scatterplot for the LAIGROUND dataset, while
Figure 3b,c show the LAI and LUECanopy retrieval scatterplots for the FLUX dataset.

Figure 3 shows LAI retrieved with a R2 performance between 0.41 and 0.69 and an RMSE between
1.07 and 1.22, while LUECanopy is retrieved with an R2 performance of 0.74 and an RMSE of 0.17.
In addition, the site-by-site leave-one-site-out retrieval performance and regression coefficients for
the LAIGROUND dataset are shown in Table 3, while the corresponding information for the FLUX
dataset is shown in Table 4. Tables 3 and 4 also show the confidence intervals for the determined
leave-one-site-out coefficients.
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Table 3. Leave-one-site-out LAIGROUND LANDSAT regression retrieval performance using
Equation (4). a and b are the leave-one-site-out regression coefficients defined in Equation (4).

Best-Fit
Coefficients

Lower Bound
Confidence Interval

Upper Bound
Confidence Interval

Site Name LAI RMSE N a b a b a b

Beltsville 0.85 26 8.41 −0.92 7.73 −1.18 8.94 −0.65
CEFLES2 0.60 26 8.55 −1.04 7.76 −1.31 9.10 −0.79
California 1.32 59 8.19 −1 7.60 −1.43 9.22 −0.77

Italy 1.58 35 8.49 −1.20 7.82 −1.49 9.33 −0.92
Mead 1.03 92 7.27 −0.71 5.86 −0.9 7.67 −0.03

Missouri 0.98 10 8.13 −0.87 7.57 −1.18 8.81 −0.64
NAFE06 0.31 14 8.08 −0.85 7.50 −1.42 9.19 −0.61

SEN3EXP2009 0.89 10 8.20 −0.94 7.61 −1.26 8.90 −0.77
SMEX02-IA 1.23 21 8.66 −1.06 8.03 −1.35 9.27 −0.83

SPARC 1.74 45 9.17 −1.31 8.67 −1.55 9.73 −1.03
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Table 4. Leave-one-site-out FLUX LANDSAT regression retrieval performance using Equations (4) and
(5). a, b, c, and d are the leave-one-site-out regression coefficients defined in Equations (4) and (5).

RMSE Best-Fit Coefficients Lower Bound
Confidence Interval

Upper Bound
Confidence Interval

Site LAI LUE N a b c d a b c d a b c d

DE-Kli 0.85 0.20 4 9.52 −1.24 1.67 −0.16 9.29 −1.36 1.57 −0.20 9.85 −1.11 1.75 −0.13
FR-Gri 2.83 0.18 1 9.52 −1.24 1.67 −0.16 9.28 −1.36 1.58 −0.20 9.88 −1.09 1.76 −0.14
FR-Lam 1.11 0.20 16 9.64 −1.25 1.68 −0.17 9.40 −1.38 1.61 −0.21 9.96 −1.15 1.77 −0.15
IT-Bci 1.41 0.18 32 9.50 −1.27 1.69 −0.17 9.28 −1.39 1.62 −0.22 9.83 −1.15 1.80 −0.15

US-Arm 0.14 0.23 1 9.52 −1.24 1.66 −0.16 9.24 −1.36 1.57 −0.19 9.87 −1.03 1.74 −0.13
US-Bi 1.63 0.26 12 9.52 −1.25 1.66 −0.16 9.35 −1.40 1.57 −0.20 9.90 −1.17 1.74 −0.13
US-Ne 0.83 0.16 124 8.84 −0.80 1.44 −0.09 5.08 −0.96 1.11 −0.18 9.62 1.36 1.68 0.07
US-Ro 1.16 0.13 27 9.59 −1.20 1.65 −0.16 9.25 −1.37 1.51 −0.18 9.93 −1.03 1.71 −0.10

3.3. Satellite Retrieval and Crop Growth Model Sensitivity Analysis

We now turn to presenting the results of the crop growth model-based sensitivity analysis. First,
in Figure 4, we show the RMSE of the modeled LAI with respect to the actual ground truth LAI
for different simulations where three G × M parameters (the planting date, seed GDD to maturity,
and planting density) are offset by various amounts from their actual values. The results in Figure 4
allow for analysis of the effect of biases in combinations of the three G × M parameters varied in
the figures. The results show that with respect to the ground-truth there are several combinations
of parameter bias which lead to LAI RMSEs below 0.7 against the ground-truth measurements,
demonstrating ill-posedness in the inversion of LAI values to G × M parameters. As expected,
the situation where none of the parameters are biased (i.e., the actual G ×M parameters applied in the
field, at the center of the figure), leads to a low RMSE (near 0.6), however other combinations of biases
have similar RMSE. The magnitude of the error seems to be most sensitive to variations in the planting
density (as seen by patterns in the variation of the performance corresponding to the frequency of the
density variation); however, significant negative GDD offsets and positive planting day delays are
also seen to significantly increase the error. Overall, the error is highly variable with respect to the
parameter biases and many combinations of biases lead to high error (a range of LAI RMSEs from 0.6
to 1.6 is observed). This variation shows the strong sensitivity of the LAI to these three G ×M inputs
and the interactions between them.

In Figure 5, the sensitivity analysis from Figure 4 is reproduced with MODIS LAI retrievals instead
of ground-truth LAI measurements. First, it is important to note that the analysis causes a great
increase in the number of points analyzed (from N = 146 to N = 3280) and removes potential biases
from a skewed distribution of growth stages as all dates are included, instead of just the dates where
the ground-truth LAI measurements were taken. Secondly, the figure shows the change in modeled
versus retrieved LAI error as the MODIS EVI2/LAI regression coefficients are varied. The results
show the strong dependence of the error on both the regression coefficients used and the bias in the
model parameters. Interestingly, although all regression coefficients show good performance for some
combinations of G ×M biases, some regression coefficients show significantly less sensitivity to G ×M
biases than others in terms of LAI error. For example, low regression slopes allow for low RMSE values
at a limited number of G ×M bias combinations, while high regression slopes allow for low RMSE
values at a significantly greater number of G ×M bias combinations. As in Figure 4, the variation in the
LAI RMSE error is very sensitive to the variation of planting density, although negative GDD offsets
also have a very significant effect in increasing the error. The ill-posedness of inverting the G ×M
factors from the MODIS measurements is seen clearly in the figure with several combinations of biases
and regression coefficients leading to similar levels of LAI error. As expected, low parameter biases
(near the center of the figure) lead to low LAI RMSE values, although negatively biasing the planting
density appears to allow for better matchup with the MODIS measurements over a wider range of
regression coefficients.
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plants/m2 in simulation variant. Header represents offset from actual planting day in days in simulation variant. Color bar at right and color in main panel represents
LAI RMSE for each simulation variant determined by column and header. N = 146.
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Figure 5. RMSE of modeled LAI with respect to MODIS-retrieved LAI while varying planting date, seed GDD to maturity, and planting density, and MODIS EVI2/LAI
regression coefficients. Leftmost column represents offset from actual seed GDD to maturity in ◦C in simulation variant, while second leftmost column represents
offset from actual planting density in plants/m2 in simulation variant. Topmost header represents offset from actual planting day in days in simulation variant. Second
topmost header represents slope of EVI2/LAI regression coefficients. Third topmost header represents intercept of EVI2/LAI regression coefficients. Color bar at right
and color in main panel represents LAI RMSE for each simulation variant determined by column and header. N = 3280.
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3.4. Evaluation of Uncertainty of LAI and LUECanopy Retrievals Due to Site and Growth Stage Specific Factors
with Temporal Analysis

We now present the results analyzing the uncertainty of LAI and LUECanopy retrievals due to site
and growth stage specific factors with temporal analysis. First, in Figure 6, we show scatterplots of
retrieved versus HM modeled ∆LAI at three values of ∆ (Figure 6a–c, ∆ = 3, 6, 9) and compare them to
the retrieval performance of HM modeled LAI itself (Figure 6d). The leave-one-out regression values
from Table 3 for Mead are used to perform the retrievals. The results in Figure 6 show a rising level of
performance with increasing ∆ values, ranging from an R2 of 0.41 for ∆ = 3 to an R2 of 0.72 at ∆ = 9.
The retrieval of modeled LAI itself is seen to have an R2 of 0.85 in Figure 6d.

 Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 28 

Remote Sens. 2019, 11, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing 

3.4. Evaluation of Uncertainty of LAI and LUECanopy Retrievals Due to Site and Growth Stage Specific Factors 
with Temporal Analysis 

We now present the results analyzing the uncertainty of LAI and LUECanopy retrievals due to site 
and growth stage specific factors with temporal analysis. First, in Figure 6, we show scatterplots of 
retrieved versus HM modeled ΔLAI at three values of Δ (Figure 6a–c, Δ = 3, 6, 9) and compare them 
to the retrieval performance of HM modeled LAI itself (Figure 6d). The leave-one-out regression 
values from Table 3 for Mead are used to perform the retrievals. The results in Figure 6 show a rising 
level of performance with increasing Δ values, ranging from an R2 of 0.41 for Δ = 3 to an R2 of 0.72 at 
Δ = 9. The retrieval of modeled LAI itself is seen to have an R2 of 0.85 in Figure 6d. 

In Table 5, we show the actual and theoretical, modeled versus retrieved |r| and RMSE for LAI 
itself and ΔLAI for Δ = 2 to 10. The results in Table 5 show that the actual |r| and RMSE performance 
of the ΔLAI retrievals significantly outperform the theoretical performance calculated with Equations 
(8) and (9); for example, for Δ = 4, which corresponds to a week of measurements, the actual |r| and 
RMSE values are 0.70 and 0.40, while the theoretical values are 0.36 and 1.46, respectively.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. (a–c) Retrieved versus HM Modeled ΔLAI at Δ = 3, 6, 9; (d) Retrieved versus HM Modeled 
LAI. The colorbars represents the number of points at each marker on the scatter plot. 

  

Figure 6. (a–c) Retrieved versus HM Modeled ∆LAI at ∆ = 3, 6, 9; (d) Retrieved versus HM Modeled
LAI. The colorbars represents the number of points at each marker on the scatter plot.

In Table 5, we show the actual and theoretical, modeled versus retrieved |r| and RMSE for LAI
itself and ∆LAI for ∆ = 2 to 10. The results in Table 5 show that the actual |r| and RMSE performance of
the ∆LAI retrievals significantly outperform the theoretical performance calculated with Equations (8)
and (9); for example, for ∆ = 4, which corresponds to a week of measurements, the actual |r| and RMSE
values are 0.70 and 0.40, while the theoretical values are 0.36 and 1.46, respectively.

In Figure 7, we present the |r| correlation of the MODIS EVI2 measurements versus modeled
∆LUECanopy at different levels of smoothing and values of ∆. The results in Figure 7 show that the |r|
MODIS EVI2/∆LUECanopy correlation strongly depends on the level of smoothing and the value of ∆;
however, high |r| values may be obtained when smoothing is performed at ∆ values above 5.
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Table 5. Comparison of HM modeled versus retrieved, actual and theoretical |r| and RMSE for the
retrieval of ∆LAI and LAI at different values of ∆.

∆ (Days) |r|-Modeled v
Retrieved

|r|-Modeled v
Retrieved

Theoretical

RMSE-Modeled
v Retrieved

RMSE-Modeled
v Retrieved
Theoretical

N

2 0.52 0.13 0.17 1.46 2429
3 0.64 0.25 0.29 1.46 2429
4 0.70 0.36 0.40 1.46 2429
5 0.75 0.45 0.50 1.46 2429
6 0.78 0.53 0.59 1.46 2429
7 0.81 0.59 0.68 1.46 2429
8 0.83 0.65 0.76 1.46 2429
9 0.85 0.69 0.84 1.46 2429
10 0.87 0.73 0.91 1.46 2429

Value Itself (no delta) 0.92 0.88 1.04 1.03 2429
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Only days with modeled LUECanopy greater than zero are included in Figures 6 and 7 and Table 5.
In addition, for consistency with Figure 2, the small number of days which have less than 95% of the
underlying measured GPP time series available are not included in Figure 7.

In addition to comparison of modeled values (from the Mead, Nebraska sites) in Figure 7,
∆LUECanopy retrievals are compared against the actual ∆LUECanopy measurements at all sites in the
FLUX dataset. The performance against all the actual ∆LUECanopy data is shown in Figures 8 and 9,
while the site-by-site performance is shown in Figures S1–S10 in the Supplementary Materials.

Figures 8 and 9 and Figures S1–S10 show that the actual ∆LUECanopy is retrieved with a performance
at or above the theoretical performance assuming independence of retrieval error with respect to
time and the relationship holds at most, but not all, sites. Poor performance at some sites, as seen
in Figures S1–S10, may be explained by the large pixel size of MODIS (500 m), which can cause
significant noise in the measurement of the daily time series depending on the size of the field and
the inhomogeneity of the area surrounding the field [97,98]. Specifically, the mixed-pixel effect causes
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the signatures of neighboring pixels to be blended and it makes it difficult to separate the time-series
of individual crops, especially if spring and winter crops are grown nearby [97], as is the case at
some of the sites where poor performance is observed. Furthermore, the footprint of the flux tower
measurements themselves depends on meteorological conditions and can be affected by process
occurring outside the boundaries of the field [81,99]. Overall, however, strong performance is seen for
the majority of site-years analyzed providing confidence in the retrievals.Remote Sens. 2019, 11, x FOR PEER REVIEW 18 of 28 
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3.5. Training LAI and LUECanopy Retrievals with HM Simulations

Lastly, we present the results indicating the performance of training the LAI and LUECanopy

retrievals with HM modeled values as opposed to measured ground-truth values. In Table 6,
we compare the RMSE of the LAI retrieval at sites other than Mead in the LAIGROUND dataset trained
on either actual or modeled Mead LAI values, while in Table 7 we do the same for the LUECanopy

retrievals in the FLUX dataset.

Table 6. Comparison of LAI retrieval performance on all sites except Mead, Nebraska in LAIGROUND
dataset trained with actual and HM-modeled Mead, Nebraska LAI values. Only sites with ≥10 points
listed site-by-site; all points included in last row.

Site N RMSE Trained with
Actual Data

RMSE Trained with
Modeled Data

Beltsville 26 0.84 0.97
CEFLES2 26 0.77 0.87
California 59 1.40 1.39

Italy 35 1.39 1.26
Missouri 10 0.62 0.78
NAFE06 14 0.51 0.47

SEN3EXP2009 10 0.87 0.79
SMEX02-IA 21 1.20 1.32

SPARC 45 1.87 1.83
All except Mead, Nebraska 267 1.30 1.29

Table 7. Comparison of LUECanopy retrieval performance on all sites except Mead, Nebraska in FLUX
dataset trained with actual and HM-modeled Mead, Nebraska LUECanopy values.

Site N RMSE Trained with
Actual Data

RMSE Trained with
Modeled Data

DE-Kli 4 0.20 0.20
FR-Gri 1 0.20 0.10

FR-Lam 16 0.21 0.29
IT-BCi 32 0.19 0.35

US-ARM 1 0.22 0.37
US-Bi2 12 0.26 0.30
US-Ro1 27 0.13 0.28

All except Mead, Nebraska 93 0.19 0.31

The results in Tables 6 and 7 show the difference in performance in using modeled versus actual
data to train the LAI regression is small, while LUECanopy retrievals perform better when trained with
actual, as opposed to modeled, values.

4. Discussion

The results presented in this study outline the importance of reducing the uncertainty in the
relationship between satellite measurements and crop states variables caused by site and growth stage
specific factors, in particular to use using remote sensing to map the G × E ×M factors affecting crop
growth. The importance of reducing the uncertainty is well illustrated by Figure 5, which shows
that the set of allowable G ×M parameters in terms of consistency with the MODIS LAI retrievals
(as measured by the RMSE) is strongly a function of the regression coefficients chosen.

Based on the “one place, one time, one equation” concept [27], the appropriate regression
coefficients for each time and place are ultimately different; therefore, auxiliary information is needed
to select the appropriate regression coefficient column for each site and time to retrieve G × M in
Figure 5. This variability of the regression coefficients is best seen on the LAIGROUND dataset with
high-resolution LANDSAT measurements in both the coefficients themselves and the large confidence
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intervals in Table 3, from which the range of the regression coefficients in Figure 5 was constructed.
Less variability is seen on the FLUX dataset in Table 4 because this dataset has fewer points, smaller
diversity in sites (points from Mead, Nebraska make up more than half the dataset), and is not designed
to test the spatial variability of LAI in nearby plots in the same way as the LAIGROUND dataset;
as a result, the LAIGROUND results in Table 3 are more appropriate for analyzing the variability
between sites. Analyzed in conjunction with Figure 5, the regression coefficient variability in Table 3
makes it very difficult to use remote sensing for mapping G × E ×M. This is because, as illustrated in
Figures 4 and 5, the retrieval of G × E ×M is difficult due to equifinality (i.e., “multiple combinations
of parameters leading to similar simulation accuracy”) [13] and, especially when the observations are
uncertain remote sensing retrievals, is ill-posed. Figure 4 does a good job of showing the ill-posedness
of the G ×M retrieval even when using ground-truth LAI measurements; interestingly, due to the
availability of the entire time series when using MODIS measurements in Figure 5, some combinations
of G × M identified as probable in Figure 4 are not probable in Figure 5 for any combination of
regression coefficients. This is an illustration of the importance of the number of measurements [13,100]
needed to perform G × E ×M retrievals and the frequent, low-cost observations provided by satellites
may be one of the most promising technologies to achieve that goal [101].

Although the uncertainty caused by site and growth stage specific secondary factors is
well-known [27–29,50,51], it is difficult to isolate it from other sources. One approach to understand
it [29,50,51] is to include variables connected to the secondary factors that cause it in the regression
methodology. Unfortunately, this approach requires that the secondary factors causing the uncertainty
are known and recorded or measured prior to the analysis being conducted. As a result, these studies
can miss some of the factors causing the issue and underestimate its extent. Another approach is to train
a global relationship between the satellite variables and crop state variables, ignoring the secondary
factors [27]. In this case [27], the issue is seen from the variability of the regression coefficients, as in
our analysis in Tables 3 and 4, as well as indirectly from the variability in the leave-one-site-out RMSE
error. However, this method cannot be used to exclude other sources of uncertainty from the retrieval,
such as random error and the mixed-pixel effect [102].

In this study, temporal analysis is used to avoid these alternate sources [27,29,50,51] of uncertainty
in determining the portion caused by site and growth stage specific secondary factors. The results in
Table 5 show that the modeled ∆LAI is retrieved from the MODIS measurements with significantly
better performance in terms of both |r| and RMSE as compared to the theoretical values assuming
temporal independence of error, indicating significant site and time correlation of error. These results
are also reproduced with actual ∆LUECanopy measurements across multiple CO2 flux tower sites in
Figures 8 and 9. Both the results with modeled ∆LAI and actual ∆LUECanopy indicate a significant
portion of the error can be removed by either predicting the secondary factors [29,50,51] or developing
better methods to remove their influence, such as identifying vegetation indices less sensitive to the
secondary factors [32,45,46]. The difference between the actual and theoretical |r| and RMSE for both
∆LAI and ∆LUECanopy provide an indication of the possible reduction in uncertainty by addressing
the issue with secondary factors. The change in performance with respect to the value of ∆ is driven by
two factors:

• As ∆ increases, the correlation between the error in the retrieved LAI or LUECanopy at t2 relative to
t1 decreases because the measurements are more likely to be in different growth stages.

• As ∆ increases, the magnitude of the retrieved ∆LAI or ∆LUECanopy increases relative to the
remaining error which is not cancelled when calculating the change in the retrieved variables
from the variables themselves, i.e., e[t2] − e[t1].

As a result of these opposing error-influencing forces, a single value for the improvement in
the performance that could be obtained by reducing the influence of the secondary factors cannot be
reported; however, as seen from Table 5 and Figures 8 and 9 the improvement can be quite dramatic.
For example, for ∆LAI, the actual |r| at ∆ = 2 is 0.52 (compared to a theoretical value of 0.13), while the
actual |r| at ∆ = 5 is 0.75 (compared to a theoretical value of 0.45).
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Furthermore, the retrieval of ∆LAI and ∆LUECanopy is also useful as a measure of the timescale
of the sensitivity of the MODIS measurements to changes in the canopy structure and crop status.
Good responsiveness to time-sensitive processes is important for several applications of crop remote
sensing. For example, good responsiveness is important in monitoring phenology/crop growth
stage [103–105], in-season detection of nitrogen [106,107], water [107], and disease [108] stresses, and
measurement of change in canopy structure during important growth stages [109]; these applications
have proven useful in crop growth modeling [59], precision agriculture [110], and phenotyping for
breeding selection [109], respectively. Our results show that satellite measurements can be used to
detect changes in LAI and LUECanopy faster and with higher accuracy than would be expected if the
error in LAI and LUECanopy retrievals were not autocorrelated in time. As a result, we also show
the potential to rapidly detect growth and stress related changes in crop state variables with greater
precision than that would be inferred from looking at generic performance validation studies [27,28].

The analysis used in this study relied on strong crop growth model simulation performance to
expand the dataset of ground-truth LAI values to daily resolution. The strong performance of the
HM simulations at the Mead, Nebraska sites, seen in [90] and Figures 1 and 2, provides a potential
path [67] for future research to expand the development of testing agronomic satellite retrievals to
a wide variety of G x E x M factors with farmer-provided agromanagement data. The results in
Table 6 show that using HM simulation data from Mead, Nebraska to train LAI retrievals can provide
nearly identical performance to using actual ground-truth LAI measurements from Mead, while
Table 7 shows there are some relatively significant biases in using modeled LUECanopy to perform the
training. The results for training LAI retrievals on HM simulation data show the potential of using
farmer-provided agromanagement data to train, test, and improve retrieval algorithms, although a
significantly greater number of sites is needed to understand the generalizability and biases in this
approach. Nevertheless, the potential of reducing the uncertainty in the retrieval of crop state variables
and the potential to map G × E ×M factors shown in this study provides strong support for pursuing
this collocated crop growth model simulation approach in agricultural remote sensing and should
encourage researchers to increase their collaborative efforts with farmers [68,111].

5. Conclusions

Overall, this study showed that the uncertainty in the relationship between satellite measurements
and crop state variables caused by site and growth stage specific factors is significant and that this
uncertainty leads to significant difficulties in using remotely sensed data to retrieve the genotype ×
environment ×management (G × E ×M) factors affecting crop growth. Specifically, we performed
an extensive temporal analysis and retrieved the temporal change in the state variables to show the
amount of uncertainty caused by this secondary factor variability. We also conducted a joint sensitivity
analysis of the remote sensing regression parameters and crop model genotype x management (G ×M)
parameters to illustrate the ill-posedness of retrieving G × E ×M factors from satellite measurements.
This analysis demonstrated the criticalness of reducing the uncertainty in the relationship between
satellite measurements and crop state variables to make the retrieval more feasible. The study shows
the need for further data collection and model development that can ultimately lead to methods that
will minimize the secondary uncertainty caused by site and growth stage specific factors. In addition,
further work needs to be conducted to address the application of the methods to use training data in
regions where biotic stresses are poorly controlled and where, unlike the case in highly developed
commercial agriculture systems [7], crop growth models show significant uncertainties in predicting
actual yields (as opposed to potential yields) due to suboptimal management [112]. This research is
critical to achieving the goal of mapping G × E ×M factors on a global scale, which can improve our
ability to make predictions about the global agricultural system [113].

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/16/1928/s1,
Figures S1–S10: Actual versus theoretical |r| and RMSE performance of the ∆LUECanopy retrievals site-by-site at
different levels of smoothing and values of ∆.
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27. Kang, Y.; Özdoğan, M.; Zipper, S.; Román, M.; Walker, J.; Hong, S.; Marshall, M.; Magliulo, V.; Moreno, J.;
Alonso, L.; et al. How Universal Is the Relationship between Remotely Sensed Vegetation Indices and Crop
Leaf Area Index? A Global Assessment. Remote Sens. 2016, 8, 597. [CrossRef]

28. Corti, M.; Cavalli, D.; Cabassi, G.; Marino Gallina, P.; Bechini, L. Does remote and proximal optical sensing
successfully estimate maize variables? A review. Eur. J. Agron. 2018, 99, 37–50. [CrossRef]

29. Wang, Y.; Zhang, K.; Tang, C.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X.; Wang, Y.; Zhang, K.; et al. Estimation
of Rice Growth Parameters Based on Linear Mixed-Effect Model Using Multispectral Images from Fixed-Wing
Unmanned Aerial Vehicles. Remote Sens. 2019, 11, 1371. [CrossRef]

http://dx.doi.org/10.1016/j.jag.2006.05.003
http://dx.doi.org/10.1016/S0167-8809(00)00168-7
http://dx.doi.org/10.1016/j.agrformet.2019.05.013
http://dx.doi.org/10.1016/j.agsy.2010.01.006
http://dx.doi.org/10.1016/j.agrformet.2016.12.015
http://dx.doi.org/10.1016/j.ecolmodel.2016.02.013
http://dx.doi.org/10.1016/j.rse.2019.04.005
http://dx.doi.org/10.1016/j.rse.2016.07.030
http://dx.doi.org/10.1016/j.rse.2013.07.018
http://dx.doi.org/10.1016/j.fcr.2012.02.012
http://dx.doi.org/10.1016/j.fcr.2016.10.004
http://dx.doi.org/10.1016/j.agrformet.2012.11.017
http://dx.doi.org/10.1073/pnas.1222463110
http://dx.doi.org/10.1016/j.agsy.2018.03.002
http://dx.doi.org/10.1016/j.envsci.2016.08.011
http://dx.doi.org/10.1016/J.FCR.2012.09.009
http://dx.doi.org/10.1016/j.eja.2015.11.021
http://dx.doi.org/10.3390/agronomy8120291
http://dx.doi.org/10.3390/rs8070597
http://dx.doi.org/10.1016/j.eja.2018.06.008
http://dx.doi.org/10.3390/rs11111371


www.manaraa.com

Remote Sens. 2019, 11, 1928 24 of 28

30. Clevers, J.; Kooistra, L.; van den Brande, M.; Clevers, J.G.P.W.; Kooistra, L.; Van den Brande, M.M.M. Using
Sentinel-2 Data for Retrieving LAI and Leaf and Canopy Chlorophyll Content of a Potato Crop. Remote Sens.
2017, 9, 405. [CrossRef]

31. Gonsamo, A.; Chen, J.M. Improved LAI Algorithm Implementation to MODIS Data by Incorporating
Background, Topography, and Foliage Clumping Information. IEEE Trans. Geosci. Remote Sens. 2014, 52,
1076–1088. [CrossRef]

32. Liu, J.; Pattey, E.; Jégo, G. Assessment of vegetation indices for regional crop green LAI estimation from
Landsat images over multiple growing seasons. Remote Sens. Environ. 2012, 123, 347–358. [CrossRef]

33. Li, Z.; Jin, X.; Yang, G.; Drummond, J.; Yang, H.; Clark, B.; Li, Z.; Zhao, C.; Li, Z.; Jin, X.; et al. Remote Sensing
of Leaf and Canopy Nitrogen Status in Winter Wheat (Triticum aestivum L.) Based on N-PROSAIL Model.
Remote Sens. 2018, 10, 1463. [CrossRef]

34. Boren, E.J.; Boschetti, L.; Johnson, D.M.; Boren, E.J.; Boschetti, L.; Johnson, D.M. Characterizing the Variability
of the Structure Parameter in the PROSPECT Leaf Optical Properties Model. Remote Sens. 2019, 11, 1236.
[CrossRef]

35. Gitelson, A.A.; Peng, Y.; Arkebauer, T.J.; Schepers, J. Relationships between gross primary production, green
LAI, and canopy chlorophyll content in maize: Implications for remote sensing of primary production.
Remote Sens. Environ. 2014, 144, 65–72. [CrossRef]

36. Pinter, P.J.; Jackson, R.D.; Ezra, C.E.; Gausman, H.W. Sun-angle and canopy-architecture effects on the
spectral reflectance of six wheat cultivars. Int. J. Remote Sens. 1985, 6, 1813–1825. [CrossRef]

37. Jacquemoud, S.; Verhoef, W.; Baret, F.; Bacour, C.; Zarco-Tejada, P.J.; Asner, G.P.; François, C. PROSPECT +

SAIL models: A review of use for vegetation characterization. Remote Sens. Environ. 2009, 113, S56–S66.
[CrossRef]

38. Combal, B.; Baret, F.; Weiss, M.; Trubuil, A.; Macé, D.; Pragnère, A.; Myneni, R.; Knyazikhin, Y.; Wang, L.
Retrieval of canopy biophysical variables from bidirectional reflectance: Using prior information to solve the
ill-posed inverse problem. Remote Sens. Environ. 2003, 84, 1–15. [CrossRef]

39. Houborg, R.; McCabe, M.F. Adapting a regularized canopy reflectance model (REGFLEC) for the retrieval
challenges of dryland agricultural systems. Remote Sens. Environ. 2016, 186, 105–120. [CrossRef]

40. Houborg, R.; McCabe, M.; Cescatti, A.; Gao, F.; Schull, M.; Gitelson, A. Joint leaf chlorophyll content
and leaf area index retrieval from Landsat data using a regularized model inversion system (REGFLEC).
Remote Sens. Environ. 2015, 159, 203–221. [CrossRef]

41. Xiao, Z.; Liang, S.; Wang, J.; Song, J.; Wu, X. A Temporally Integrated Inversion Method for Estimating Leaf
Area Index From MODIS Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2536–2545. [CrossRef]

42. Koetz, B.; Baret, F.; Poilvé, H.; Hill, J. Use of coupled canopy structure dynamic and radiative transfer models
to estimate biophysical canopy characteristics. Remote Sens. Environ. 2005, 95, 115–124. [CrossRef]

43. Atzberger, C. Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative
transfer models. Remote Sens. Environ. 2004, 93, 53–67. [CrossRef]

44. Dorigo, W.; Richter, R.; Baret, F.; Bamler, R.; Wagner, W.; Dorigo, W.; Richter, R.; Baret, F.; Bamler, R.;
Wagner, W. Enhanced automated canopy characterization from hyperspectral data by a novel two step
radiative transfer model inversion approach. Remote Sens. 2009, 1, 1139–1170. [CrossRef]

45. Jin, X.; Li, Z.; Feng, H.; Xu, X.; Yang, G. Newly Combined Spectral Indices to Improve Estimation of Total Leaf
Chlorophyll Content in Cotton. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4589–4600. [CrossRef]

46. Xiao, Y.; Zhao, W.; Zhou, D.; Gong, H. Sensitivity Analysis of Vegetation Reflectance to Biochemical and
Biophysical Variables at Leaf, Canopy, and Regional Scales. IEEE Trans. Geosci. Remote Sens. 2014, 52,
4014–4024. [CrossRef]

47. Verrelst, J.; Camps-Valls, G.; Muñoz-Marí, J.; Rivera, J.P.; Veroustraete, F.; Clevers, J.G.P.W.; Moreno, J.
Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—A review.
ISPRS J. Photogramm. Remote Sens. 2015, 108, 273–290. [CrossRef]

48. Darvishzadeh, R.; Atzberger, C.; Skidmore, A.; Schlerf, M. Mapping grassland leaf area index with airborne
hyperspectral imagery: A comparison study of statistical approaches and inversion of radiative transfer
models. ISPRS J. Photogramm. Remote Sens. 2011, 66, 894–906. [CrossRef]

49. Atzberger, C.; Guérif, M.; Baret, F.; Werner, W. Comparative analysis of three chemometric techniques for the
spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput. Electron. Agric. 2010,
73, 165–173. [CrossRef]

http://dx.doi.org/10.3390/rs9050405
http://dx.doi.org/10.1109/TGRS.2013.2247405
http://dx.doi.org/10.1016/j.rse.2012.04.002
http://dx.doi.org/10.3390/rs10091463
http://dx.doi.org/10.3390/rs11101236
http://dx.doi.org/10.1016/j.rse.2014.01.004
http://dx.doi.org/10.1080/01431168508948330
http://dx.doi.org/10.1016/j.rse.2008.01.026
http://dx.doi.org/10.1016/S0034-4257(02)00035-4
http://dx.doi.org/10.1016/j.rse.2016.08.017
http://dx.doi.org/10.1016/j.rse.2014.12.008
http://dx.doi.org/10.1109/TGRS.2009.2015656
http://dx.doi.org/10.1016/j.rse.2004.11.017
http://dx.doi.org/10.1016/j.rse.2004.06.016
http://dx.doi.org/10.3390/rs1041139
http://dx.doi.org/10.1109/JSTARS.2014.2360069
http://dx.doi.org/10.1109/TGRS.2013.2278838
http://dx.doi.org/10.1016/j.isprsjprs.2015.05.005
http://dx.doi.org/10.1016/j.isprsjprs.2011.09.013
http://dx.doi.org/10.1016/j.compag.2010.05.006


www.manaraa.com

Remote Sens. 2019, 11, 1928 25 of 28

50. Kiala, Z.; Odindi, J.; Mutanga, O.; Peerbhay, K. Comparison of partial least squares and support vector
regressions for predicting leaf area index on a tropical grassland using hyperspectral data. J. Appl. Remote Sens.
2016, 10, 036015. [CrossRef]

51. Wang, L.; Chang, Q.; Li, F.; Yan, L.; Huang, Y.; Wang, Q.; Luo, L.; Wang, L.; Chang, Q.; Li, F.; et al. Effects of
growth stage development on paddy rice leaf area index prediction models. Remote Sens. 2019, 11, 361.
[CrossRef]

52. Machwitz, M.; Giustarini, L.; Bossung, C.; Frantz, D.; Schlerf, M.; Lilienthal, H.; Wandera, L.; Matgen, P.;
Hoffmann, L.; Udelhoven, T. Enhanced biomass prediction by assimilating satellite data into a crop growth
model. Environ. Model. Softw. 2014, 62, 437–453. [CrossRef]

53. Weiss, M.; Troufleau, D.; Baret, F.; Chauki, H.; Prévot, L.; Olioso, A.; Bruguier, N.; Brisson, N. Coupling canopy
functioning and radiative transfer models for remote sensing data assimilation. Agric. For. Meteorol. 2001,
108, 113–128. [CrossRef]

54. Zhang, L.; Guo, C.L.; Zhao, L.Y.; Zhu, Y.; Cao, W.X.; Tian, Y.C.; Cheng, T.; Wang, X. Estimating wheat yield
by integrating the WheatGrow and PROSAIL models. Field Crops Res. 2016, 192, 55–66. [CrossRef]

55. Thorp, K.R.; Wang, G.; West, A.L.; Moran, M.S.; Bronson, K.F.; White, J.W.; Mon, J. Estimating crop biophysical
properties from remote sensing data by inverting linked radiative transfer and ecophysiological models.
Remote Sens. Environ. 2012, 124, 224–233. [CrossRef]

56. Jin, Z.; Prasad, R.; Shriver, J.; Zhuang, Q. Crop model- and satellite imagery-based recommendation tool for
variable rate N fertilizer application for the US Corn system. Precis. Agric. 2017, 18, 779–800. [CrossRef]
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